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Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13

distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These

receptors are divided into seven distinct classes (5-HT1 to 5-HT7) largely on the basis of their structural and operational characteristics.

Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater

degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more

precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during

the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many

receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost

limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the

complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the

number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor

trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities

are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep

the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of

pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an

attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor–effector

systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas. D 2002
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1. Introduction

Serotonin (5-hydroxytryptamine, 5-HT) produces its

effects through a variety of membrane-bound receptors.

5-HT and its receptors are found both in the central and

peripheral nervous system (CNS/PNS), as well as in a

number of nonneuronal tissues in the gut, cardiovascular

system and blood. In evolutionary terms, 5-HT is one of

the oldest neurotransmitters and has been implicated in

the aetiology of numerous disease states, including

depression, anxiety, social phobia, schizophrenia, and ob-

sessive–compulsive and panic disorders; in addition to

migraine, hypertension, pulmonary hypertension, eating

disorders, vomiting and, more recently, irritable bowel

syndrome (IBS).

With the exception of the 5-HT3 receptor, which is a

ligand-gated ion channel, 5-HT receptors belong to the

G-protein-coupled receptor (GPCR) superfamily and, with at

least 14 distinct members, represent one of the most complex

families of neurotransmitter receptors. However, for a num-

ber of years, there has been no new addition to the 14 known

receptors, with the exception of a second (5-HT3B) and

possibly a third (5-ht3C) subunit for the 5-HT3 receptor.

Nevertheless, multiple splice variants (5-HT4, 5-HT7) or

RNA edited isoforms (5-HT2C) have been described, whilst

there is evidence that amongst the heptahelical 5-HT recep-

tors, homo- and heterodimerisation (5-HT1B/1D) can occur,

as reported for other GPCRs. Furthermore, peptide or lipid
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receptor modulators have been reported, such as 5-HT

moduline (Leu–Ser–Ala–Leu (LSAL), a putative product

of a chromogranin), which demonstrates selectivity for the

5-HT1B and 5-HT1D receptors, or oleamide, which acts on

several 5-HT receptors (including 5-HT2A/2C and 5-HT7).

Not surprisingly, the 5-HT receptor family has been a

long-standing target of intense research, in both the aca-

demia and the pharmaceutical industry, even before the

complexity of the system was unravelled by molecular

cloning. Current efforts pursue in the identification of more

potent and selective ligands for the different receptor

subtypes. It is anticipated that such selective receptor

probes will provide the tools to advance definition of

functional effects in situ, be it in vitro or in vivo, and, in

addition, lead to enhanced drug treatments with fewer side

effects for a variety of disorders. Moreover, molecular

genetic approaches offer a complementary strategy for

studying distinct 5-HT receptor subtypes via the generation

of gene-targeted and transgenic lines of mice with altered

expression of 5-HT receptor genes. 5-HT is also a substrate

for the 5-HT transporter, itself an important target in the

treatment of depression and social phobia; however, the

transporter will not be addressed here. Suffice, it is the tar-

get for selective serotonin reuptake inhibitors (SSRIs), such

as fluoxetine, paroxetine and citalopram, which is one of

the most important classes of drugs to have emerged during

the 20th century.

2. Current criteria for classifying 5-HT receptors

The classification of 5-HT receptors began in 1957, when

it was demonstrated that functional responses of the guinea

pig ileum could be partially blocked by morphine (M),

whilst the remainder of the response was inhibited by

dibenzyline (D). This led Gaddum and Picarelli (1957) to

propose a subdivision of these novel receptors naming them

M and D receptors, respectively. However, this classifica-

tion was scrutinised due to the nonspecific effects of these

discriminatory ligands on other neurotransmitter systems

(Lewis, 1960; Day and Vane, 1963). Consequently, in 1976,

utilising radioligand-binding techniques, with rat cortical

membranes, the presence of putative 5-HT receptors was

postulated (Bennett and Snyder, 1976). Regardless, there

was no attempt to correlate these sites with any functional

response, an essential requirement for receptor classification

(see below). In 1979, Peroutka and Snyder demonstrated

the presence of two distinct 5-HT receptor binding sites,

utilising the radioligands [3H]-5-HT, [3H]-spiperone and

[3H]-LSD. 5-HT was the only neurotransmitter capable of

displacing these radioligands; thus, the sites were named

5-HT1 and 5-HT2.

The M receptor was found to be distinct from the 5-HT1

and 5-HT2 receptors in both function and distribution,

whilst the D receptor corresponded pharmacologically to

the 5-HT2 binding site. In 1986, Bradley et al. elaborated

on this classification scheme for 5-HT receptors. They

proposed to consider three main groups of 5-HT receptors,

namely 5-HT1-like, 5-HT2 and 5-HT3, the latter corres-

ponding to the M receptor. The scheme, based primarily on

functional criteria, proved to be a robust and useful

framework for the classification of these receptor subtypes.

With the widespread use of radioligands and second

messenger readout systems, subtypes of 5-HT1 receptor

binding sites were described (see Hoyer et al., 1985a,b),

but it became obvious that the 5-HT1C receptor would be

better classified within the 5-HT2 receptor group (Hoyer,

1988). Second, a novel 5-HT receptor was identified in the

gastrointestinal (GI) tract and brain, termed 5-HT4. Third,

shortly after the Bradley et al. paper, the molecular biology

era started in earnest; initially, the b2 adrenoceptor was

cloned, followed swiftly by G21 or alternatively, as it is

now known, the 5-HT1A receptor (Fargin et al., 1988).

From this point onwards, most known or suspected 5-HT

receptors were cloned in rapid succession. The majority of

this aforementioned work took place between 1987 and

1992 and led to the identification of a number of ‘new’

receptors, without obvious physiological counterparts. Ten-

tatively termed 5-ht1E, 5-ht1F, 5-ht5A, 5-ht5B, 5-ht6, 5-HT7

and others, these also required integration into the clas-

sification system (note that the use of lower case desig-

nates a receptor that has not been definitively demonstrated

to ‘function’ in native systems).

In addition, as efforts have progressed to sequence the

human genome, it has become clear that receptors for

hormones and neurotransmitters are likely to represent up

to 2% of the genome, or as many as several hundreds of

distinct gene products. Furthermore, posttranslational mod-

ifications are likely to yield many more operationally

distinct protein entities. To date, hundreds of receptors

have been identified, either functionally and/or by cloning;

hitherto there are approximately 150 cloned orphan GPCRs

(Lee et al., 2001). Presently, it is unclear how many will be

attributed to the 5-HT receptor family. Thus, the Serotonin

Club Receptor Nomenclature Committee proposed a new

classification system based on operational, structural and

transductional information (Humphrey et al., 1993). It was

agreed at the time that no single criterion should be

exclusive or predominant. This implies that the term

receptor should only be applied to an entity for which

all three classes of information are available, and that

providing reasonable evidence for a functional role can

be documented.

These principles have subsequently been adapted to

additional receptor families by the receptor Nomenclature

Committee of the International Union of Pharmacology

(NC-IUPHAR). The current classification (Hoyer et al.,

1994) has been progressively adapted to accommodate

new information, obtained with both recombinant and

native receptors and favours an alignment of nomenclature

with the human genome to avoid species differences (see

Hartig et al., 1996; Hoyer and Martin, 1997). Currently,
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seven families of 5-HT receptors have been recognised

(Fig. 1).

3. The 5-HT1 receptor class

The 5-HT1 receptor class is comprised of five receptor

subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E and 5-ht1F),

which, in humans, share 40–63% overall sequence identity

and couple preferentially, although not exclusively, to Gi/o to

inhibit cAMP formation (see Tables 1 and 2). The 5-ht1E and

5-ht1F receptors are given a lower case appellation to denote

that endogenous receptors with a physiological role have not

yet been found. In contrast, 5-HT1A, 5-HT1B and 5-HT1D

receptors have been demonstrated functionally in a variety

of tissues from various species. The 5-HT1C designation is

now vacant, since this receptor was reclassified to 5-HT2C

due to structural, operational and transductional similarities

with the 5-HT2 receptor subclass (Hoyer et al., 1994).

3.1. 5-HT1A receptors

5-HT1A receptors are largely distributed throughout the

CNS. In the raphé nuclei, they are somatodendritic and act

as autoreceptors to inhibit cell firing; postsynaptic 5-HT1A

receptors are present in a number of limbic structures,

particularly the hippocampus. Activation of 5-HT1A recep-

tors causes neuronal hyperpolarisation, an effect mediated

through G-protein-coupled K + channels (see Aghajanian,

1995). Furthermore, in the GI tract, 5-HT1A receptors were

identified on the guinea pig myenteric plexus where they

function as inhibitory modulators of fast excitatory post-

synaptic potentials. The human 5-HT1A receptor is located

on chromosome 5q11.2–q13 (see Hoyer et al., 1994).

The involvement of 5-HT1A receptors in a number of

physiological and behavioural effects has been established.

5-HT1A receptors have been implicated in the neuroendo-

crine regulation of adrenocorticotrophic hormone (ACTH),

but not prolactin secretion (Jorgensen et al., 2001). How-

ever, whether certain responses are mediated via pre- or

postsynaptic mechanisms remains equivocal. Yet, it has

been established that activation of postsynaptic 5-HT1A

receptors induces a behavioural syndrome, characterised

by flat body posture, reciprocal forepaw treading and head

weaving. Moreover, the spontaneous tail-flick response has

also been attributed to postsynaptic 5-HT1A receptor activa-

tion (Tricklebank, 1985; Lucki, 1992; Bervoets et al., 1993);

whereas evidence for a presynaptic 5-HT1A (auto)receptor in

the hyperphagia response appears convincing (Simansky,

1998). Conversely, a species-dependent mechanism appears

to be in operation with respect to the hypothermic response

to 5-HT1A agonists; in the rat, both pre- and postsynaptic

mechanisms appear to mediate this response, whilst in the

mouse, a presynaptic mechanism has been proposed (Lars-

Fig. 1. Graphical representation of the current classification of 5-HT receptors. Receptor subtypes represented by coloured boxes and lower case designate

receptors that have not been demonstrated to definitively function in native systems. Abbreviations: 30-50 cyclic adenosine monophosphate (cAMP);

phospholipase C (PLC); negative (� ve); positive ( + ve).

D. Hoyer et al. / Pharmacology, Biochemistry and Behavior 71 (2002) 533–554 535



son et al., 1990; Bill et al., 1991; Millan et al., 1993). In

addition, a decrease in blood pressure and heart rate and

increased locomotor responses can be induced by central

5-HT1A receptor activation, whilst fluoxetine-induced pe-

nile erections can be markedly potentiated by combined

5-HT1A/1B receptor blockade (Wilkinson and Dourish, 1991;

Dreteler et al., 1991; Kalkman, 1995; Millan et al., 1997).

The proposed role of 5-HT1A receptors in modulating

anxiety-related behaviours is supported by recent studies

utilising 5-HT1A receptor knockout (KO) mice. These ani-

mals demonstrated increased anxiety in a number of experi-

mental paradigms. The KO animals spent less time in the

open arms of the elevated plus maze, the elevated zero maze

and the centre of an open field, and less time exploring a

novel object. Moreover, these animals demonstrated de-

creased baseline immobility in the forced swimming and tail

suspension tests (Heisler et al., 1998; Parks et al., 1998).

5-HT1A receptor agonists, such as buspirone or gepirone,

are being used or developed for the treatment of anxiety and

depression (Tunnicliff, 1991; Den Boer et al., 2000). Fur-

thermore, the 5HT1A receptor antagonist and beta adreno-

ceptor blocker, pindolol, was reported to enhance the

therapeutic efficacy and shorten the onset of action of SSRIs

when coadministered in depressed patients. However, both

positive and negative findings have been reported, as is

common in depression trials (for review, see Artigas et al.,

2001). Flesinoxan, another 5-HT1A receptor agonist, was

initially developed as an antihypertensive agent, however,

its effects in patients were disappointing, and this approach

has now been abandoned.

Several agonists show selectivity for the 5-HT1A recep-

tor, particularly 8-hydroxy-di-n-propylamino tetralin (8-OH-

DPAT), which acts as a full agonist in most systems, whilst

the anxiolytics, buspirone and gepirone, and other ligands,

such as MDL 72832, are partial agonists. The synthesis of

selective and silent antagonists at this receptor has proven

more difficult. To date, the only selective high-affinity silent

antagonist at this receptor is WAY 100635 (Forster et al.,

Table 1

Serotonin receptor homology

Values in the upper right portion represent overall percentage amino acid similarity (i.e. the two sequences have either an identical or, alternatively, a similar

amino acid); whilst those in the shaded lower left portion demonstrate overall percentage amino acid sequence identity. Data refer to human receptors; except

the 5-ht5B receptor, which was derived from the rat.
* The actual overall homology of the 5-HT3 versus other 5-HT receptors was very low ( < 10%); the numbers indicated in the table represent similarity

within certain segments of the 5-HT3 receptor. Furthermore, the 5-HT2C-LONG, 5-HT4-LONG and 5-HT7A sequences were used to represent these receptor

subtypes. The results were generated using the GAP algorithm (Wisconsin Sequence Analysis Package; Accelrys), with gap and length weights of 14 and 3,

respectively. Darker shading indicates clusters of receptors with higher similarity.
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1995; Fletcher et al., 1996; Table 2). Nevertheless, addi-

tional noteworthy ligands include the agonists U-92016A

and (+)UH 301, and the antagonists (� )UH 301 and NAD

299 (McCall et al., 1994; Newman-Tancredi et al., 1998;

Martin et al., 1999; Ross et al., 1999).

3.2. 5-HT1B receptors

The 5-HT1B receptor and its counterpart the 5-HT1D

receptor, have experienced a complex and debated history.

The 5-HT1B receptor was originally defined according

Table 2

5-HT1 receptor nomenclature proposed by the NC-IUPHAR subcommittee on 5-HT receptors

Nomenclature 5-HT1A 5-HT1B
a,b 5-HT1D

a 5-ht1E 5-ht1F

Previous names – 5-HT1Db 5-HT1Da – 5-ht1Eb, 5-HT6

Selective agonists 8-OH-DPAT Sumatriptan Sumatriptan – LY 334370

L 694247 PNU 109291

Selective antagonists (pKB) ( ± )WAY 100635 (8.7) GR 55562 (7.4) BRL 15572 (7.9) – –

SB 224289 (8.5)

SB 236057 (8.9)

Radioligands [3H]WAY100635 [125I]GTI [125I]GTI [3H]5-HT [125I]LSD

[3H]8-OH-DPAT [125I]CYP (rodent) [3H]Sumatriptan [3H]LY 334370

[3H]Sumatriptan [3H]GR 125743

[3H]GR 125743

13)G-protein effector Gi/o Gi/o Gi/o Gi/o Gi/o

Gene/chromosomal localisation HTR1A/5q11.2–q13 HTR1B/6q13 HTR1D/1p34.3–36.3 HTR1E/6q14–15 HTR1F/3p11–p14.1

Structural information h421 P8908 h390 P28222 h377 P28221 h365 P28566 h366 P30939

m421 Q64264 m386 P28334 m374 Q61224 m366 Q02284

r422 P19327 r386 P28564 r374 P28565 r366 P30940

5-HT2,3,4 receptor nomenclature proposed by the NC-IUPHAR subcommittee on 5-HT receptors

Nomenclature 5-HT2A 5-HT2B 5-HT2C
c 5-HT3 5-HT4

Previous names D/5-HT2 5-HT2F 5-HT1C M –

Selective agonists DOId BW 723C86 Ro 600175 SR 57227 BIMU 8

m-chlorophenyl-biguanide RS 67506

ML 10302

Selective antagonists (pKB) Ketanserin (8.5–9.5) SB 200646 (7.5)e Mesulergine (9.1) granisetron (10) GR 113808 (9–9.5)

MDL 100907 (9.4) SB 204741 (7.8) SB 242084 (9.0) ondansetron (8–10) SB 204070 (10.8)

RS 102221 (8.4) tropisetron (10–11) RS 100235 (11.2)

Radioligands [125I]DOI [3H]5-HT [125I]LSD [3H](S)-zacopride [125I]SB 207710

[3H]Ketanserin [3H]Mesulergine [3H]tropisetron [3H]GR 113808

[3H]MDL 100907 [3H]granisetron [3H]RS 57639

[3H]GR 65630

[3H]LY 278584

G-protein effector Gq/11 Gq/11 Gq/11
f Gs

Gene/chromosomal localisation HTR2A/13q14–q21 HTR2B/2q36.3–q37.1 HTR2C/Xq24 HTR3/11q23.1–q23.2 HTR4/5q31–33

Structural information h471 P28223 h481 P41595 h458 P28335 Multisubunitg h387 Y09756AS

m471 P35362 m504 Q02152 m459 P34968 5-HT3A, 5-HT3B, m387 Y09587AS

r471 P14842 r479 P30994 r460 P08909 5-ht3C r387 U20906AS

5-HT5,6,7 receptor nomenclature proposed by the NC-IUPHAR subcommittee on 5-HT receptors

Nomenclature 5-ht5A 5-ht5B 5-ht6 5-HT7

Previous names 5-HT5a – – 5-HTX

5-HT1-like

Selective agonists – – – –

Selective antagonists (pKB) – – Ro 630563 (7.9) SB 258719 (7.9)

SB 271046 (7.8) SB 269970 (9.0)

SB 357134 (8.5)

Radioligands [125I]LSD [125I]LSD [125I]SB 258585 [125I]LSD

[3H]5-CT [3H]5-CT [125I]LSD [3H]SB 269970

[3H]5-HT [3H]5-CT

[3H]5-HT

G-protein effector Gi/o None identified Gs Gs

Gene/chromosomal localisation HTR5A/7q36.1 htr5b/2q11–q13 HTR6/1p35–36 HTR7/10q23.3–24.3

Structural information h357 P47898 m370 P31387 h440 P50406 h445 P34969AS

m357 P30966 r370 P35365 m440 NP_067333 m448 P32304

r357 P35364 r438 P31388 r448 P32305AS
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to operational criteria and was thought to be a rodent-

specific receptor. However, similarities in transductional

features, function and brain distribution led to the opinion

that the rodent ‘5-HT1B’ and nonrodent ‘5-HT1D’ recep-

tors were species homologues (Hoyer and Middlemiss,

1989), which was demonstrated unequivocally when the

receptors were cloned (Hartig et al., 1992). The pharma-

cologically defined human 5-HT1D receptor was, in fact,

a composite of two subtypes, encoded by distinct genes,

which were called 5-HT1Da and 5-HT1Db. This notation

reflected the fact that the operational profiles of these two

receptors, utilising the ligands available at that time, were

almost indistinguishable. It was subsequently shown, in

spite of overt differences in their pharmacological profiles,

that 5-HT1B and 5-HT1Db receptors are respectively rodent

and nonrodent species homologues with 97% overall se-

quence homology.

Indeed, the differences in the pharmacology of these

two homologues are now attributable to the mutation of a

single amino acid in the transmembrane spanning region

Asp123 to Arg123. Identification of the 5-HT1Da gene in

rats confirmed that 5-HT1B/1D receptors represent only

two different classes, prompting the need to revise the

receptor notation according to the classification principles.

Accordingly, the 5-HT1Db receptor is now known as 5-HT1B,

consistent with the fact that it is the human homologue of

the original rodent 5-HT1B receptor. The human 5-HT1B

receptor is located on chromosome 6q13. However,

it is important to remember that, because the human

receptor now assumes preeminence, the operational char-

acteristics of the 5-HT1B class are those defined for the

human receptor.

5-HT1B receptors are expressed in the CNS, concentrated

in the basal ganglia, striatum and frontal cortex and are

thought to serve as terminal autoreceptors. In addition,

the receptor may also act as a terminal heteroreceptor

controlling the release of other neurotransmitters, such

as acetylcholine, glutamate, dopamine, noradrenaline and

g-aminobutyric acid (see Pauwels, 1997). The receptors are

also found on cerebral arteries and other vascular tissues.

Peripheral effects have been described, such as inhibition of

noradrenaline release in vena cava and inhibition of plasma

extravasation produced by trigeminal ganglion stimulation

in guinea pigs and rats. 5-HT1B receptors mediate contrac-

tion of rat caudal arteries. In nonrodents, they exhibit the

5-HT1D ‘pharmacology.’

Interest in 5-HT1B receptor agonists has been enhanced

by the antimigraine properties of sumatriptan, a nonselective

5-HT1D/1B receptor agonist; thus, agonists have been

developed for this indication (dihydroergotamine (DHE),

zolmitriptan, naratriptan, rizatriptan, elitriptan, almotriptan,

donitriptan and others; see Leysen et al., 1996). The putative

5HT1B receptor agonist, anpirtoline, has analgesic and anti-

depressant-like properties in rodents and, interestingly,

5-HT1B receptor KO mice were reported to be both highly

aggressive and have an increased preference for alcohol

(Saudou et al., 1994; Ramboz et al., 1995; Crabbe et al.,

1996). However, recent findings have diminished the per-

ceived utility of 5-HT1B receptor KO mice as a model of

alcoholism as attempts to replicate such abnormalities in

ethanol consumption were unsuccessful (Crabbe et al., 1999;

Risinger et al., 1999). Furthermore, as opposed to the 5-HT1A

receptor KO mouse, the 5-HT1B receptor KO animals dem-

onstrates a somewhat different and, in most cases, contrary

behavioural profile, displaying decreases in measures of

anxiety in the elevated plus maze, open field and tail

suspension test, in addition to an increase in aggression in

the resident intruder paradigm (Saudou et al., 1994; Zhuang

et al., 1999; Mayorga et al., 2001). An attempt was made to

develop 5-HT1B agonist ‘serenics,’ such as eltoprazine;

however, the expected antiaggressive effects were not ob-

served in patients (De Koning et al., 1994).

RU 24969 was the first reported full agonist at the

5-HT1B receptor, and earlier studies utilised the strong

locomotor response to this ligand, as a model of postsy-

naptic receptor function. However, the response demon-

strates species differences; in the mouse, evidence for the

involvement of 5-HT1B receptors is persuasive; whereas the

same response in the rat can be attributed to 5-HT1A

receptor activation (Cheetham and Heal, 1993; Kalkman,

1995). Additional effects tentatively attributed to central

5-HT1B receptor activation, in rats, include hypophagia,

hypothermia and penile erection (Middlemiss and Hutson,

1990; Millan and Perrin-Monneyron, 1997).

Other selective 5-HT1B agonists characterised include

MK 462 (rizatriptan), BW 311C90 (zolmitriptan), SKF

99101H, GR 46611, L 694247 and CP 93129 (in rodents).

In addition, some of these agents, e.g. sumatriptan and,

Notes to Table 2:
a The 5-HT1B and 5-HT1D receptor nomenclature has been revised (Hartig et al., 1996), only the nonrodent form of the receptor was previously called

5-HT1Db.
b Displays a different pharmacology to the rodent form of the receptor.
c Multiple isoforms of the 5-HT2C receptor are produced by RNA editing.
d Also activates the 5-HT2C receptor.
e Nonselective blockade.
f The 5-HT3 receptor is a transmitter-gated cation channel that exists as a pentamer of 4TM subunits.
g Human, rat, mouse, guinea pig and ferret homologues of the 5-HT3A receptor have been cloned, which exhibit interspecies variation in pharmacology. A

second 5-HT3 receptor subunit, 5-HT3B, imparts distinctive biophysical properties upon heterooligomeric (5-HT3A/5-HT3B) versus homooligomeric (5-HT3A)

recombinant receptors.
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more recently, LY 334370 (Johnson et al., 1997), have

significant affinity to 5-ht1F receptors (see below). Clearly,

some of these molecules will recognise 5-HT1B and 5-HT1D

receptors almost equally, e.g. L 694247. However, SB

216641 (h5-HT1B) and BRL 15572 (h5-HT1D) have permit-

ted discrimination of the effects mediated by one or the

other of these receptors, in appropriate species, at the level

of presynaptic auto- and heteroreceptors (see Price et al.,

1997; Schlicker et al., 1997; Hopwood and Stamford, 2001;

Roberts and Price, 2001). With respect to antagonists, there

are few with selectivity for the 5-HT1B receptor. The most

commonly used (in rodents), pindolol, cyanopindolol and

SDZ 21009, are equipotent at the 5-HT1A receptor, where

they have antagonist or partial agonist properties and are

more potent as beta-adrenoceptor antagonists. SB 216641,

SB 272183 and GR 55562 demonstrate a certain degree of

5-HT1B selectivity, whilst others demonstrate inverse ago-

nism (e.g. SB 224289 and SB 236057), thus allowing the

characterisation of 5-HT1B receptor tone. Moreover, the use

of these new compounds, displaying different levels of

intrinsic activity at these receptors, demonstrates that ter-

minal 5-HT autoreceptors are those of the 5-HT1B type (see

Price et al., 1997; Roberts and Price, 2001; Roberts et al.,

1997, 2000; Schlicker et al., 1997; Gaster et al., 1998;

Selkirk et al., 1998; Middlemiss et al., 1999; Hopwood and

Stamford, 2001; Watson et al., 2001). Useful radiolabelled

ligands include [3H]-GR 125743, a 5-HT1D/1B receptor

antagonist (Domenech et al., 1997) that can be used,

similarly to [125I]5-hydroxytryptamine-5-O-carboxymethyl-

glycyltyrosinamide (GTI) (Bruinvels et al., 1991) or

[3H]alniditan (Leysen et al., 1996). In rodents, [125I]cyano-

pindolol is capable of labelling 5-HT1B sites under appro-

priate conditions (Hoyer et al., 1985a,b; Ase et al., 2001).

3.3. 5-HT1D receptors

The 5-HT1D receptor (formerly 5HT1Da) is located on

chromosome 1p34.3–p36.3 and possesses 63% overall

structural homology with the 5-HT1B receptor (formerly

5-HT1Db). Its level of expression is very low compared with

5-HT1B receptors, and it has thus been difficult to assign a

functional role to 5-HT1D receptors. The characteristics of

the 5-HT1B and 5-HT1D subtypes are now particularly well

established. Moreover, the use of new 5-HT1B receptor

compounds (see above) has suggested the presence of a

5-HT1D autoreceptor in the dorsal raphé nuclei (see Roberts

and Price, 2001; Roberts et al., 1997; Buhlen et al., 1996;

Pineyro et al., 1996; Hopwood and Stamford, 2001). More-

over, 5-HT1D receptors have been found in the human heart,

where they modulate 5-HT release.

The currently available antimigraine drugs do not distin-

guish between 5-HT1B and 5-HT1D receptors. It has been

proposed that neurogenic inflammation and nociceptive

activity within trigeminovascular afferents may be 5-HT1D

receptor mediated due to the presence of 5-HT1D, but not

5-HT1B, receptor mRNA in the trigeminal ganglia, but this

has not been confirmed. However, the selective 5-HT1D

receptor agonist, PNU 109291, has been shown to play a

significant role in the suppression of meningeal neurogenic

inflammation and trigeminal nociception in guinea pig

models, suggesting that the 5-HT1D receptor subtype may

represent a useful therapeutic target for migraine and related

headaches (Cutrer et al., 1999). Furthermore, immunocyto-

chemical analysis has also demonstrated both 5-HT1B and

5-HT1D receptor immunoreactivity, in human trigeminal

ganglia, where these receptors appear to colocalise with

calcitonin gene-related peptide, substance P and nitric oxide

synthase (Hou et al., 2001).

3.4. 5-ht1E Receptors

The putative 5-ht1E receptor was first identified in

binding studies in homogenates of human frontal cortex,

but it was not possible to readily determine its overall

distribution and pharmacology. It is a 365-amino acid

protein negatively linked to adenylyl cyclase in recombinant

cell systems. The receptor was mapped to human chro-

mosome 6q14–q15; however, its function is presently

unknown, and selective ligands are largely unavailable.

Although 5-ht1E receptor mRNA (Bruinvels et al., 1994)

and recognition sites exhibiting the pharmacological char-

acteristics of the receptor have been mapped in the rodent

and human brain (Miller and Teitler, 1992; Barone et al.,

1993, 1994), confirmation of a true physiological role for

5-ht1E receptors is still lacking; hence, they retain their

lower case appellation. A thorough characterisation of the

5-ht1E receptor in combination with the development of

selective ligands is anticipated.

3.5. 5-ht1F Receptors

The 5-ht1F receptor consists of a 366-amino acid protein,

negatively linked to adenylyl cyclase in recombinant cell

systems. The 5-ht1F receptor is most closely related to the

5-ht1E receptor with > 70% sequence homology across the

seven TM domains and is located on chromosome 3p11.

Little is known about the distribution and function of the

5-ht1F receptor; mRNA for the human receptor protein has

been identified in the brain (concentrated in the dorsal

raphé, hippocampus, cortex, striatum, thalamus and hypo-

thalamus), mesentery and uterus, but not in kidney, liver,

spleen, heart, pancreas or testis. Its distribution suggests that

it may possess a role as a 5-HT autoreceptor.

Interestingly, the antimigraine 5-HT1B/1D agonist suma-

triptan labels 5-ht1F sites with high affinity. Moreover,

naratriptan also has affinity for 5-ht1F receptors. Indeed,

hampered by the lack of selective radioligand probes,

Waeber and Moskowitz (1995) have used [3H]sumatriptan

(in the presence of selective ligands to mask non-5-ht1F
sites) to identify a distinct distribution of putative 5-ht1F
receptors in guinea pig brain. The binding site distribution

obtained was very similar to that for 5-ht1F mRNA, encour-
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aging the opinion that the radioligand binding was to 5-ht1F
sites. In support of this, Beer et al. (1993) had described

5-CT-insensitive 5-HT1 binding sites in the same regions of

rat brain. However, the extent to which these radioligand-

binding studies specifically labelled 5-ht1F recognition sites

is questionable. Nevertheless, it has been hypothesised that

the 5-ht1F receptor might be a target for drugs with anti-

migraine properties and 5-ht1F receptor mRNA has been

detected in the trigeminal ganglia, stimulation of which

leads to plasma extravasation in the dura, a component of

neurogenic inflammation thought to be a possible cause of

migraine (Hamon and Bourgoin, 2000).

LY 334370, a selective 5-ht1F receptor agonist, inhibits

trigeminal stimulation-induced early activated gene (Fos

protein) expression in nociceptive neurones in the rat

brainstem (Johnson et al., 1997). LY 334370 has also

been used as a radioligand and demonstrated a reasonable

correlation between the receptor protein and mRNA

distribution, with prominent binding in the cortical areas,

striatum, hippocampus and olfactory bulb. Further select-

ive ligands are currently in development, i.e. LY 344864

and BRL 54443, however, these also have affinity for

5-ht1E receptors (see Phebus et al., 1997; McKune and

Watts, 2001).

4. The 5-HT2 receptor class

This class comprises the 5-HT2A, 5-HT2B and 5-HT2C

receptors, which exhibit 46–50% overall sequence identity

and couple preferentially to Gq/11 to increase the hydrolysis

of inositol phosphates and elevate cytosolic [Ca+ + ] (see

Tables 1 and 2). The 5-HT2A receptor refers to the classical

D receptor initially described by Gaddum and Picarelli

(1957), which was later defined as the 5-HT2 receptor by

Peroutka and Snyder (1979). The 5-HT2B receptor mediates

the contractile action of 5-HT in the isolated rat fundus.

However, it is yet to be confirmed that this receptor is

coupled to the hydrolysis of inositol phosphates in native

tissues. Indeed, in human pulmonary artery endothelial

cells, 5-HT2B receptor stimulation causes intracellular cal-

cium release via an independent mechanism (Ullmer et al.,

1996), similar to that seen in the rat stomach fundus (Cox

and Cohen, 1996). In neither tissue was the 5-HT2B receptor

coupled to phosphatidylinositol hydrolysis. The third 5-HT2

subtype corresponds to the previously known 5-HT1C

receptor, which as mentioned previously was reclassified

as the 5-HT2C receptor (Hoyer et al., 1994).

4.1. 5-HT2A receptors

The 5-HT2A receptor has been located on human chro-

mosome 13q14–q21 and comprises of 471 amino acids in

rats, mice and humans (Table 2). It is widely distributed in

peripheral and central tissues; this entity corresponds to the

former 5-HT2 or D receptor (Bradley et al., 1986). 5-HT2A

receptors mediate contractile responses in many vascular

smooth muscle preparations, e.g. bronchial, uterine and

urinary smooth muscle, and part of the contractile effects

of 5-HT in the guinea pig ileum. In addition, platelet

aggregation and increased capillary permeability following

exposure to 5-HT have been attributed to 5-HT2A receptor-

mediated functions.

Centrally, these receptors are principally located in the

cortex, claustrum and basal ganglia. 5-HT2A receptor

activation stimulates hormone secretion, e.g. ACTH, cor-

ticosterone, oxytocin, renin and prolactin (Van de Kar et al.,

2001). Moreover, 5-HT2 receptor agonists, in addition to

precursors of 5-HT and 5-HT releasing agents, mediate

certain behavioural syndromes in vivo. Head twitching in

mice, and wet-dog shakes and back muscle contractions in

rats, can be inhibited with 5-HT2 receptor antagonists

with a potency correlating with their affinity for 5-HT2A

receptor binding sites. In confirmation, such head twitch-

ing has been demonstrated to be inhibited with the se-

lective 5-HT2A receptor antagonist MDL 100907 (Green

and Heal, 1985; Fone et al., 1989; Schreiber et al., 1995).

Moreover, the production of drug discriminative stimulus

properties to 5-HT2 receptor agonists, e.g. (�)2,5,-dime-

thoxy-4-methamphetamine (DOM) can be blocked by

5-HT2 receptor antagonists, such as ketanserin, suggesting

that the discriminative cue is 5-HT2A receptor mediated

(Fiorella et al., 1995a,b).

The most selective agents, in terms of 5-HT2A receptor

affinity, are ketanserin and MDL 100907. The former agent

was developed for the treatment of hypertension, but it

remains to be established whether 5-HT2A receptor antagon-

ism is a valid antihypertensive principle, since ketanserin is

also an a1 adrenoceptor antagonist. 5-HT2A receptor antag-

onists, such as risperidone, ritanserin, seroquel, olanzapine

or MDL 100907, demonstrate divergent selectivity and have

been indicated/developed for the treatment of schizophrenia.

However, development of MDL 100907 for acute schizo-

phrenia was terminated, apparently for insufficient efficacy;

although other similar molecules are still in the pipeline.

It appears that the combination of dopamine D2 and

5-HT2A receptor antagonism may best explain the antipsy-

chotic activity of drugs such as clozapine, olanzapine,

seroquel and others. Moreover, it has been proposed for

some time that LSD and other hallucinogens produce their

effects via 5-HT2A receptors. This is the best possible

explanation (see Vollenweider et al., 1998; Aghajanian and

Marek, 1999), although their selectivity vis-a-vis 5-HT2B and

5-HT2C receptors is rather limited. Truly selective agonists

have not been described as aMe-5-HT, DOI and DOB also

recognise other receptors of the 5-HT2 receptor class.

4.2. 5-HT2B receptors

The latest introduction to the 5-HT2 receptor class is the

5-HT2B receptor. Activation of this receptor subtype leads to

fundic smooth muscle contraction. However, it has proven
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difficult to pharmacologically characterise due to opera-

tional characteristics similar to those of other members of

the 5-HT2 family (Humphrey et al., 1993). Thus, confusion

as to the pharmacological nature of the fundus receptor led

to its original classification as a member of the 5-HT1

subclass of 5-HT receptors despite the relative low potency

of 5-CT with respect to 5-HT in this preparation (Buchheit

et al., 1986). The receptor also defied classification in terms

of the recognised subtypes of the high-affinity [3H]-5-HT

binding sites. The phenylpiperazines, such as mCPP,

antagonised 5-HT-induced contractions of the fundus; how-

ever, their antagonist potencies did not correlate with

affinities with either the 5-HT1A or the 5-HT1B binding

sites (Cohen and Wittenauer, 1986). The fact that 5-CT was

approximately 10-fold less active than 5-HT was more

consistent with the receptor in the fundus being a 5-HT1C

receptor. Moreover, a highly significant correlation was

observed between pKD values for 5-HT2C (at the time

designated as 5-HT1C binding sites) and pD2 values for

the contractile responses of some 25 agonists tested (Buch-

heit et al., 1986). However, the involvement of 5-HT2C

receptors was excluded on the basis of antagonist studies;

compounds such as mianserin, ketanserin and pirenperone

were inactive at concentrations which should have theoret-

ically occupied 5-HT2C receptors. Thus, although the fun-

dus receptor shared some characteristics with the classical

5-HT2 receptor, it was clear, however, that it was not a

5-HT2A receptor (Clineschmidt et al., 1985). Furthermore,

additional investigations showed that the fundus receptor

was not a 5-HT2C receptor, as 5-HT2C mRNA could not be

found in the rat fundus preparation.

Eventually, the situation was clarified with the cloning

of the rat, mouse and human ‘fundic’ receptors; also

known as 5-HT2F for a short time (Kursar et al., 1992;

Table 2). In humans, it is located on chromosome 2q36.3–

2q37.1. 5-HT2B receptor mRNA is found in the rat fundus,

gut, heart, kidney, lung and brain. The mouse homologue

is expressed in the intestine, heart, kidney and brain.

Selective agonists (BW 723C86; see Kennett et al.,

1997a) and antagonists (RS 127445; see Bonhaus et al.,

1999) will undoubtedly facilitate in the classification of

5-HT2B receptor-mediated effects.

Centrally, 5-HT2B receptor-like immunoreactivity has

been reported restricted to a few brain regions particularly

cerebellum, lateral septum, hypothalamus and medial

amygdala (Duxon et al., 1997a). Interestingly, direct injec-

tion of BW 723C86 into the medial amygdala was reported

to have anxiolytic properties in the rat social interaction

test (Duxon et al., 1997b). Moreover, 5-HT2B receptor

activation has been implicated in mediating hyperphagia

and bringing about a reduction in grooming frequency

(Kennett et al., 1997a).

The 5-HT2B receptor is present in endothelial cells of

pig pulmonary arteries where it mediates vasorelaxation

(via NO release) upon activation. This observation is

further supported by the presence of 5-HT2B, and not

5-HT2C, receptor mRNA in a number of blood vessels

(Ullmer et al., 1995). Moreover, 5-HT2B receptors mediate

endothelium-dependent relaxation in isolated rat jugular

vein and contraction of longitudinal muscle in human small

intestine, and when stably expressed in a mouse fibroblast

cell line, they have been reported to cause mitogenesis, via

MAP kinase activation, linked to tumour-transforming

activity. SB 200646 and SB 206553 have been reported

as selective 5-HT2C/2B receptor antagonists, with low

affinity for 5-HT2A and other sites (Kennett et al., 1994,

1996). SB 204741 has been reported as the first selective

5-HT2B receptor antagonist, whilst LY 53857 has high

affinity at recombinant human 5-HT2B receptors. Agonists

with some selectivity are a-Me-5-HT and 5-methoxytrypt-

amine, which act as a full agonist with high affinity for the

5-HT2B site (Jerman et al., 2001). BW 723C86 has been

reported to have selectivity at the rat 5-HT2B receptor,

although such selectivity was less pronounced at human

recombinant receptors.

5-HT2B receptor antagonists, such as SB 200646, are

relatively new and may be indicated for the treatment of

migraine prophylaxis, given the vasodilatatory role of this

receptor subtype and also that a number of ‘older’ drugs

impart such activity. Moreover, it appears that the 5-HT2B

receptor, expressed in cardiac valves, is responsible for the

valvulopathies reported from dex-fenfluramine containing

preparations utilised as appetite suppressant agents (see

Fitzgerald et al., 2000; Rothman et al., 2000).

4.3. 5-HT2C receptors

The 5-HT2C receptor was one of the first of this family to

be cloned, although full-length sequences were difficult to

obtain due to a complex exon–intron structure. The receptor

was mapped to human chromosome Xq24. Given its similar

pharmacological and transductional features with the 5-HT2A

receptor (Hoyer, 1988), it did not take long to establish the

sequence of the latter, based on homology cloning. However,

due to the lack of truly selective 5-HT2C receptor ligands, our

current knowledge concerning a functional role of this

receptor is rather limited. Thus far, its distribution has been

limited to the CNS and choroid plexus, the latter being where

this receptor was originally identified. Although it has been

demonstrated that 5-HT2C receptors in the choroid plexus

couple to PLC activity, additional functional correlates

remain to be established. Hitherto, at least 14 functional

isoforms (and potentially many more) of the 5-HT2C receptor

have been identified; they were produced by adenine deam-

inase editing of the receptor mRNA (Burns et al., 1997;

Fitzgerald et al., 1999; see also Section 7).

MK 212 and Ro 600175 represent moderately selective

agonists, whilst amongst the antagonists, LY 53857, ZM

170809, ritanserin, mianserin and mesulergine have been

utilised, but they are essentially nonselective (seeHoyer et al.,

1994). Moreover, it has been suggested that the anxio-

genic component of mCPP is mediated by 5-HT2C receptor
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activation, and selective 5-HT2C receptor antagonists, such

as SB 242084, display anxiolytic properties in various

animal models (Kennett et al., 1997b). However, additional

studies utilising selective agonists are required (e.g. Ro

600175, Dekeyne et al., 1999). Following treatment with

agents such as mCPP and Ro 600175 additional character-

istic behavioural responses, attributed to central 5-HT2C

receptor activation, include hypoactivity, hypophagia,

increased penile grooming/erections and oral dyskinesia

(see Kennett et al., 1994; Millan et al., 1997; Martin et al.,

1998; Mehta et al., 2001; Vickers et al., 2001). 5-HT2C

receptor activation has been shown to exert a tonic, inhib-

itory influence upon frontocortical dopaminergic and adre-

nergic, but not serotonergic, transmission and, in part, to

play a role in the neuroendocrine function (Millan et al.,

1998; Jorgensen et al., 1999; see also Raap and Van de Kar,

1999). Consistent with its action as a 5-HT2C receptor

antagonist, RS 102221 increased food intake and weight

gain in rats, yet, it failed to reverse the hypolocomotion

induced by mCPP, possibly due to restricted brain penetra-

tion (Bonhaus et al., 1997). Moreover, the 5-HT2C receptor

KO mouse suffers from spontaneous convulsions, cognitive

impairment, increased food intake and obesity, but similar

effects are not reproduced by selective antagonists, suggest-

ing that these changes may result from neuroadaptation.

Nevertheless, the 5-HT2C receptor is an attractive target for

the discovery of novel treatment for feeding disorders (see

Bickerdike et al., 1999).

5. The 5-HT3 receptor class: an intrinsic ligand-gated

channel

5-HT3 receptors (M receptors of Gaddum and Picarelli,

1957) have been, based on their overall electrophysiological

features and sequence, placed within the ligand-gated ion

channel receptor superfamily, similar to the nicotinic acet-

ylcholine or GABAA receptors (Boess and Martin, 1994).

The receptors are found on neurones, of both central and

peripheral origin, where they trigger rapid depolarisation

due to a transient inward current, subsequent to the opening

of nonselective cation channels (Na + , Ca+ + influx, K +

efflux). The response desensitises and resensitises rapidly.

The human homologue of the receptor was mapped to

chromosome 11q23.1–q23.2 (see Weiss et al., 1995). How-

ever, the role of the 5-HT3 receptor acting as a presynaptic

modulator of neurotransmitter release, in the CNS, has

recently been questioned (Van Hooft and Vijverberg, 2000).

5-HT3 receptors are present in several brain regions,

including the CA1 pyramidal cell layer in the hippocampus,

the dorsal motor nucleus of the solitary tract and the area

postrema (Laporte et al., 1992). In the periphery, they are

located on pre- and postganglionic autonomic neurones and

on neurones of the sensory nervous system. In addition to its

pronounced effect on the cardiovascular system, 5-HT

induces diverse effects, via 5-HT3 receptor activation,

throughout the GI tract regulating both motility and intest-

inal secretion (De Ponti and Tonini, 2001).

A cDNA clone encoding a single subunit of the 5-HT3A

receptor was isolated from a neuronally derived cell line

(Maricq et al., 1991). Two splice variants were subsequently

described in neuroblastoma–glioma cells (NCB-20, NG

108-15) and rat native tissues. These variants appear to

possess similar distribution, pharmacological profiles and

electrophysiological characteristics when expressed as

homomers (see, for example, Hope et al., 1993; Miquel

et al., 1995). The native receptor, as revealed by electron

microscopy performed with neuroblastoma–glioma cells, is

indeed a pentamer (Boess et al., 1995). 5-HT3 receptor

subtypes may exist, yet, it appears that species differences

provide the basis of the pharmacological heterogeneity

reported thus far. However, after extensive investigation, a

second subunit, 5-HT3B, has been cloned (Davies et al.,

1999). It appears that the heteromeric combination of

5-HT3A and 5-HT3B subunits is necessary to provide the

full functional features of the 5-HT3 receptor; since either

subunit alone results in receptors with very low conductance

and response amplitude, as determined in electrophysio-

logical experiments (Dubin et al., 1999; Hanna et al., 2000).

Moreover, the 5-HT3 receptor appears to be directly modu-

lated by a divergent range of compounds, including alco-

hols, certain anaesthetic agents and divalent cations

(however, the latter may represent receptor channel block-

ade). Nevertheless, this receptor, like other members of the

ligand-gated ion channel receptor superfamily, possesses

additional, pharmacologically distinct, recognition sites,

whereby the function of the receptor can be allosterically

modulated. The structural diversity of these agents suggests

the presence of multiple modulatory sites on the 5-HT3

receptor complex (Parker et al., 1996). Moreover, patent

literature has recently reported the cloning of a third subunit,

5-ht3C, but no additional details are presently available

(Dubin et al., 2001).

5-HT3 receptors are involved in chemotherapy- and

radiotherapy-induced nausea and vomiting, which are

treated with ondansetron, granisetron and tropisetron. Since

5-HT3 receptor activation in the brain leads to dopamine

release and 5-HT3 receptor antagonists produce central

effects comparable to those of antipsychotics and anxio-

lytics, schizophrenia and anxiety were considered, at that

time, as potential indications. 5-HT3 receptor antagonists

have also been reported to induce cognition enhancing

effects in rats, suggesting utility as memory-enhancing

agents. However, to date, there are no clinical data to

substantiate such activities. Similarly, the hypothesis that

5-HT3 antagonists may prove useful in the treatment of

migraine did not materialise in clinical studies, suggesting

that in these cases, animal models have their limitations.

More recently, alosetron was developed for the treatment of

women suffering from IBS with diarrhoea, but it had to be

withdrawn (for the time being) due to safety reasons (De

Ponti and Tonini, 2001).
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6. Receptors positively coupled to adenylate cyclase:

5-HT4,6,7 receptors

Although the 5-HT4, 5-ht6 and 5-HT7 receptors all couple

preferentially to Gs and promote cAMP formation, they are

classified as distinct receptor classes because of their limited

( < 35%) overall sequence identities (Table 1). This subdivi-

sion is recognised as arbitrary and may be subject to future

modification. However, the sequence dissimilarity justifies

classification into different groups. Although the common

approach has been to perform analogy cloning, based on

known sequences (e.g. 5-ht6 and 5-HT7 receptors, which also

couple positively to cAMP production, were known for some

time), this approach was unsuccessful for the cloning of the

5-HT4 receptor, which explains the additional time taken for

its structural characterisation.

6.1. 5-HT4 receptors

Prior to the cloning of the 5-HT4 receptor (Gerald et al.,

1995), the existence of the endogenous receptor had been

widely recognised in both central and peripheral tissues,

although there has been, on occasion, confusion between

5-HT3 and 5-HT4 receptors (Hoyer, 1990). 5-HT4 receptors

were initially characterised in the late eighties by Bockaert

and colleagues (1992) using mouse and guinea pig brain,

although its existence was speculated in rat neonatal colli-

culi 20 years ago (see Clarke et al., 1989). Thus, substituted

benzamide derivatives like cisapride, renzapride or zacopr-

ide, acted as agonists at the ‘atypical’ 5-HT receptor in

mouse colliculi. Interestingly, the potent 5-HT3 receptor

antagonist tropisetron (ICS 205–930) was described as the

first competitive 5-HT4 receptor antagonist. The human

5-HT4 receptorwasmapped to chromosome5q31–33 (Claey-

sen et al., 1997). Hitherto, multiple human 5-HT4 receptor

isoforms have been described. Seven C-terminal splice

variants of the receptor have been identified (5-HT4A–H;

Blondel et al., 1997, 1998; Claeysen et al., 1997, 1999; Van

den Wyngaert et al., 1997; Mialet et al., 2000a,b). Moreover,

a novel splice variant, 5-HT4HB, with a 14-amino acid

insertion in the second extracellular loop has recently been

published (Bender et al., 2000); additional splice variants

are anticipated.

These receptor variants couple positively to adenylate

cyclase, and available data show that the pharmacology of

the variants is similar. However, one important feature of

the receptor is the level of constitutive activity, which is

expressed at rather low receptor levels. This feature may

well explain differences that have been observed with

respect to variable intrinsic activity of a number of ligands,

depending on tissue and/or species. Tissue distribution

studies demonstrate specificity in the pattern of expression

of the human 5-HT4 receptor isoforms. Moreover, the

h5-HT4D receptor isoform appears to be unique, because

in contrast to the other isoforms, it has not been described in

any other species yet (Mialet et al., 2000b). Its expression

appears to be restricted to the gut (Blondel et al., 1998),

whereas the other isoforms are expressed in cardiac atria and

brain (Blondel et al., 1998; Mialet et al., 2000a). In addition

to adenylate cyclase stimulation, direct coupling to pot-

assium channels and voltage-sensitive calcium channel have

been proposed as postreceptor events.

The receptor can be labelled with [3H]GR 113808,

[3H]RS 57639 and [125I]SB 207710. In the brain, the

distribution of receptor mRNA is similar to the distribution

of radioligand-binding sites. RT–PCR studies have also

demonstrated that 5-HT4 receptor mRNA is present in

vascular smooth muscle (Ullmer et al., 1995), as already

indicated by functional studies (see Martin and Humphrey,

1994). 5-HT4 receptor activation triggers acetylcholine

release in the guinea pig ileum and contracts the oesophagus

and colon. In addition to its modulator function on GI

motility, the 5-HT4 receptor is also involved in mediating

secretory responses to 5-HT in intestinal mucosa. Electro-

genic ion transport is stimulated through 5-HT4 receptors in

the small intestine, whilst in the piglet heart, the receptors

mediate tachycardia (right atria) and positive inotropic

effects (left atria). Similarly, isolated human atrial appen-

dages respond with increased contractile force to 5-HT4

receptor agonists. 5-HT4 receptors in the CNS appear to

modulate neurotransmitter (acetylcholine, dopamine, sero-

tonin and GABA) release and enhance synaptic transmis-

sion, and they may also play a role in memory enhancement;

however, positive clinical studies are still eagerly awaited

(Barnes and Barnes, 1998). Exposure of the receptor to

agonists results in desensitisation in many experimental in

vitro models, which, in tissue preparations of the alimentary

tract, is readily reversible upon agonist removal.

Several potent and selective 5-HT4 receptor ligands are

now available, such as the agonists BIMU 8, RS 67506 and

ML 10302 (Eglen, 1997) and the antagonists GR 113808, SB

204070, SB 203186, RS 23597-190 and RS 39604 (Bonhaus

et al., 1994; Clark, 1998), which should allow definition

of the (patho)physiological role of this receptor. Selective

5-HT4 receptor ligands have been proposed to possess

putative therapeutic utility in a number of disorders, includ-

ing cardiac arrhythmia (Kaumann and Sanders, 1994;

Rahme et al., 1999), neuro-degenerative diseases (Reynolds

et al., 1995; Wong et al., 1996) and urinary incontinence

(Boyd and Rohan, 1994; Hegde and Eglen, 1996). Cis-

apride, a gastroprokinetic agent, acts as an agonist at the

5-HT4 receptor, whilst a new generation 5-HT4 receptor

partial agonist, tegaserod (HTF-919), is currently prescribed

for constipation predominant IBS (Buchheit et al., 1995;

Norman, 2000). Furthermore, its therapeutic activity in

functional motility disorders of the upper GI tract is cur-

rently under clinical investigation (Camilleri, 2001).

6.2. 5-ht6 Receptors

The 5-ht6 receptor has been cloned from rat cDNA based

on its homology to previously cloned GPCRs. The rat
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receptor has 438 amino acids and is positively coupled to

adenylyl cyclase via Gs. The human gene has been cloned,

demonstrating 89% sequence homology with its rat equival-

ent, and mapped to human chromosome region 1p35–p36

(Kohen et al., 1996). Circumstantial evidence suggests the

putative 5-ht6 receptor to be expressed endogenously in

neuronal tissue. The rat and human 5-ht6 receptor mRNA

is located in the striatum, amygdala, nucleus accumbens,

hippocampus, cortex and olfactory tubercle, but it has not

been found in peripheral organs.

The recombinant receptor promotes intracellular accu-

mulation of cAMP, and a receptor with similar operational

characteristics is found in mouse neuroblastoma N18TG2

cells, as determined in cAMP formation and binding

studies using [125I]LSD. In addition, NCB 20 cells (Con-

ner and Mansour, 1990) and rat striatal neurones in

culture (Sebben et al., 1994) express a receptor that

couples positively to adenylyl cyclase and displays an

operational profile consistent with the recombinant 5-ht6
receptor. Perhaps more relevant to a potential physio-

logical role, evidence for the putative 5-ht6 receptor has

been obtained in homogenates of the pig caudate nucleus.

Whereby, cAMP accumulation was stimulated by agonists

with a rank order of potency compatible with a 5-ht6
receptor profile. The effects were adequately antagonised

by clozapine and methiothepin. [3H]Clozapine binds with

nanomolar affinity to two distinct sites in the rat brain;

one site displays the operational profile of the recombinant

5-ht6 receptor.

Selective ligands are now becoming available for the

5-ht6 receptor. The site can be labelled with [
125I]SB 258585

(Hirst et al., 2000). Moreover, Bromidge et al., (1999)

reported SB 271046 as a potent, selective and bioavailable

5-ht6 receptor antagonist (see also Routledge et al., 2000;

Bos et al., 2001; Bromidge et al., 2001 (SB 357134)), whilst

Glennon et al. (2000) have recently described the identifica-

tion of EMDT, a selective 5-ht6 receptor agonist.

5-ht6 Receptor antisense oligonucleotides have been

used to determine possible physiological functions in the

rat (Bourson et al., 1995). Repeated intracerebroventricular

injections gave rise to a specific behavioural syndrome of

yawning, stretching and chewing and caused a 30% reduc-

tion in the number of [3H]LSD binding sites (measured in

the presence of 300 nM spiperone). Interestingly, the

antisense-induced behavioural syndrome can be dose-

dependently antagonised by atropine, implying a modula-

tory role for 5-ht6 receptors on cholinergic neurones.

Similarly, the selective 5-ht6 receptor antagonist, Ro

04-6790, produces a behavioural syndrome involving an

increase in acetylcholine neurotransmission (Bourson et al.,

1995; Sleight et al., 1998). Moreover, enhanced retention of

spatial learning following both antisense oligonucleotides

and Ro 04-6790 has been reported (Woolley et al., 2001;

Meneses, 2001). These studies indicate a potential role for

the 5-ht6 receptor in the control of central cholinergic

function, and thus a putative target for the treatment of

cholinergic defects in cognitive dysfunction such as Alz-

heimer’s Disease. In addition, antisense oligonucleotide

treatment reduced both food consumption and body weight;

the later effect was also seen following Ro 04-6790,

suggesting a putative role for the 5-ht6 receptor in the

regulation of feeding.

In pharmacological studies, several antipsychotic agents

(notably clozapine, olanzapine, fluperlapine and seroquel)

and antidepressants (clomipramine, amitryptyline, doxepin

and nortryptyline) have high affinity and act as antagonists

at 5-ht6 receptors. This attribute tempted speculation of a

potential involvement of the 5-ht6 receptor in the patho-

genesis of psychiatric disorders. Furthermore, polymor-

phisms in the 50-upstream region of the human 5-ht6
receptor gene have been identified. However, case-control

association studies could not demonstrate any difference in

genotype, or allele frequency, between controls and schizo-

phrenic patients. The results suggest that 5-ht6 receptor

gene polymorphism does not confer increased susceptibility

to schizophrenia (Ohmori et al., 2001). However, chlorpro-

mazine-resistant patients, presenting the aforementioned

polymorphism, demonstrated significantly improved re-

sponses to clozapine, suggesting that the 5-ht6 genotype

may help predict patient responses. The role of 5-ht6
receptors has been recently reviewed by Branchek and

Blackburn (2000).

6.3. 5-HT7 receptors

The 5-HT7 receptor has been cloned from the rat,

mouse, guinea pig and human cDNA and is located on

human chromosome 10q23.3–q24.4. Despite demonstrat-

ing high interspecies homology (>90%; To et al., 1995),

the receptor shares a low homology with other members of

the 5-HT receptor family ( < 50%). The human receptor has

445 amino acids and was shown to positively modulate

cAMP formation via Gs (Bard et al., 1993; Lovenberg et

al., 1993; Adham et al., 1998), most likely acting via

calmodulin-stimulated adenylate cyclase (Baker et al.,

1998). The receptor also activates the mitogen-activated

protein kinase, ERK, in primary neuronal cultures (Errico

et al., 2001). The cDNA encoding the receptor contains two

introns; one located in the second intracellular loop (Bard

et al., 1993; Shen et al., 1993) and the second in the predicted

intracellular carboxyl terminal (Ruat et al., 1993). Altern-

ate splicing of this latter intron has been reported to

generate four 5-HT7 receptor isoforms (5-HT7A–D), which

differ in their C-termini (Heidmann et al., 1997). However,

these isoforms, to date, have not been shown to differ in

their respective pharmacology, signal transduction or tissue

distribution (Jasper et al., 1997; Heidmann et al., 1998).

Conversely, the pharmacological profile of the receptor is

characterised by a high affinity for the prototypical 5-HT1

agonists 5-CT, 5-MeOT and 8-OH-DPAT, the 5HT2 recep-

tor ligand LSD and the antagonists, ritanserin, metergo-

line, methysergide and mesulergine. Indeed, operational
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studies have confirmed that the 5-HT7 receptor has an

extensive vascular distribution and is responsible for the

prominent, persistent vasodilator response to 5-HT in

anaesthetised animals (see Martin and Humphrey, 1994).

Moreover, the receptors are expressed in nonvascular

smooth muscle (Ullmer et al., 1995; Carter et al., 1995)

and the CNS.

Thus, To et al. (1995) used [3H]-5-CT, in the presence

of (�)-cyanopindolol and sumatriptan to demonstrate the

presence of 5-HT7 recognition sites in guinea pig cerebral

cortex membranes. Subsequent autoradiographic analysis

revealed a discrete localisation of binding sites in the

medial thalamic nuclei and related limbic and cortical

regions of the guinea pig brain, with more moderate

binding densities in the sensory relay nuclei, substantia

nigra, hypothalamus, central grey and dorsal raphe nuclei.

This distribution corresponds to that observed for 5-HT7

receptor mRNA. Essentially, similar results have been

obtained from studies using rat brain (Gustafson et al.,

1996). Further, evidence for a central functional role of

5-HT7 receptors has been obtained. Using whole-cell voltage

clamping, in postnatal rat suprachiasmatic (SCN) neurones,

Kawahara et al. (1994) have shown that a g-aminobutyric

acid activated current (IGABA) is reversibly inhibited by

5-HT. Operational data obtained by the authors’ point

towards an involvement of the 5-HT7 receptor, consistent

with the predicted presence of these receptors in the SCN

from the early studies of Lovenberg et al. (1993). Moreover,

the cellular localisation of rat hypothalamic 5-HT7 receptors

was suggested to be postsynaptic, with respect to serotoner-

gic neurones, and regulated by altered synaptic levels of

endogenous neurotransmitter (Clemett et al., 1999). How-

ever, evidence to establish a 5-HT autoreceptor role for

5-HT7 receptors were not forthcoming (Roberts et al.,

2001). Additional investigation with selective 5-HT7 recep-

tor agonists is required to confirm these data.

The distribution of 5-HT7 binding sites in the limbic

system and thalamocortical regions suggests a possible role

in the pathophysiology of affective disorders. Further,

support of this hypothesis stems from the observation that

atypical antipsychotics, e.g. clozapine, risperidone and anti-

depressants, have high affinity for the 5-HT7 receptor (Roth

et al., 1994). Furthermore, a down-regulation of 5-HT7

receptors occurs after chronic antidepressant treatment

(Sleight et al., 1995; Mullins et al., 1999), whilst acute,

but not chronic, stress has been demonstrated to regulate

5-HT7 receptor mRNA expression (Yau et al., 2001).

Currently, a number of ligands have been reported,

which will allow further characterisation of these receptors

in native tissues and in vivo, particularly, the antagonists

SB 258719 and SB 269970 (Thomas et al., 1998a; Hagan

et al., 2000). Indeed, a role for the 5-HT7 receptor has

been proposed in the regulation of 5-CT-induced hypo-

thermia in guinea pigs as the response was blocked by

both SB 269970 and the nonselective 5-HT7 receptor

antagonist, metergoline. Moreover, when administered at

the start of the sleep period, SB 269970 significantly

reduced time spent in paradoxical sleep during the first

3 h of EEG recording in conscious rats (Hagan et al.,

2000). Furthermore, [3H]SB 269970 can be used as a

selective radioligand for 5-HT7 receptors (Lovell et al.,

2000; Thomas et al., 2000). Finally, it is now clear that

this receptor is the orphan receptor originally described as

the ‘5-HT1-like’ receptor mediating relaxation of the

guinea pig isolated ileum and cat saphenous vein (Feniuk

et al., 1983); subsequently, it was shown to mediate

elevation of cAMP and relaxation in neonatal porcine vena

cava (Trevethick et al., 1986).

7. Orphan receptors: the putative 5-ht5 receptors

To date, no evidence has been obtained to confirm that

the recombinant 5-ht5 receptor is expressed in an endo-

genous setting. Two subtypes of the 5-ht5 receptor (5-ht5A
and 5-ht5B), sharing 70% overall sequence identity, have

been found in rodents, whereas the 5-ht5A subtype has

been found in humans and mapped to chromosome 7q36.1

(Erlander et al., 1993; Matthes et al., 1993; Schanen et al.,

1996; Grailhe et al., 2001). The 5-ht5B receptor gene has

been mapped to human chromosome 2q11–q13; however,

it has been shown that the gene failed to encode a

functional protein due to the presence of stop codons in

its coding sequence (Matthes et al., 1993; Grailhe et al.,

2001). There have been no published reports concerning a

physiological functional response, and specific binding to

a 5-ht5 recognition site has not been described. However,

the receptor transduction mechanism has been suggested

by Carson et al. (1996). The authors reported that in the

rat, the recombinant 5-ht5A receptor may be negatively

coupled to adenylate cyclase activity and predominantly

expressed in astrocytes, as suggested by the use of re-

ceptor-specific antisera. In confirmation, when transfected

into C6 glioma cells, HEK 293 and Sf9 cells, human

recombinant 5-ht5A receptor activation produced an inhibi-

tion of forskolin-stimulated cAMP production, indicating

negative coupling to cAMP via Gi and Go (Francken et al.,

1998, 2000); however, the receptor may also couple

positively to cAMP. Moreover, when expressed in Xeno-

pus oocytes, the human 5-ht5A receptor was demonstrated

to couple to the inwardly rectifying K + channel, GIRK1

(Grailhe et al., 2001).

Labelled structures included hypothalamus, hippocam-

pus, corpus callosum, fimbria, cerebral ventricles and glia.

The morphology and distribution of the cells labelled with

antiserum were consistent with those of astrocytes (codis-

tribution with GFAP was prominent), except in the olfact-

ory bulb and cortex where low levels were associated with

neurones. These observations are supported by RT–PCR

performed with cortical glial cells in culture, which sug-

gests marked expression of 5-ht5A receptor cDNA. It was

also noticed that receptor levels might be increased in
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reactive gliosis. Moreover, a putative role for 5-ht5A
receptors in the acquisition of adapted behaviour under

stressful situations has been postulated (see Branchek and

Zgombick, 1997).

8. Other putative orphan 5-HT receptors

A number of endogenous 5-HT receptors have been

identified and defined in terms of recognitory and/or

transductional characteristics, but a corresponding gene

product encoding the receptor has yet to be identified.

In the absence of structural information enabling unequi-

vocal classification, these receptors are regarded as

orphans of the present classification scheme. One of these,

the so-called ‘5-HT1-like’ receptor mediating direct vaso-

relaxation has been shown to correspond to the 5-HT7

receptor (see above). However, the situation with the

remaining orphan receptors (see Hoyer et al., 1994) has

not evolved further and, thus, the status quo ante remains.

In particular, no progress has been made with the 5-HT1P

receptor, which is present in the gut and whose pharmaco-

logy is reminiscent of the 5-HT4 receptors, with the re-

striction that some of the ligands described, like the 5-HT

dipeptides, do not affect 5-HT4 receptors (Gershon, 1999).

In addition, a high-affinity binding site for [3H]-5-HT with

novel ‘5-HT1-like’ pharmacology has been reported in the

mammalian brain (Castro et al., 1997), but it has yet to

be sufficiently characterised for inclusion in the 5-HT1

receptor family.

9. Modulation of 5-HT receptor function by endogenous

ligands, dimerisation and expression by RNA editing

9.1. 5-HT2C receptor RNA editing

The 5-HT2C receptor is the only GPCR reported so far

to be subjected to RNA editing (Burns et al., 1997;

Fitzgerald et al., 1999). Deamination of one or more

adenine bases present at five specific sites in the receptor

pre-mRNA, results in conversion of the edited bases to

inosine. Upon translation of the mature mRNA, these

inosine bases are read as guanine, resulting in an altera-

tion of the amino acids present in the second intracellular

loop and the formation of distinct receptor isoforms.

RNA editing may alter coupling energetics within the

ternary complex, thereby altering agonist-binding affinities,

G-protein coupling and functional responses. Moreover,

editing results in a systematic reduction in coupling

efficiency to the PLC signalling cascade and a loss of

constitutive activity (Herrick-Davis et al., 1999). Recom-

binant human 5-HT2C receptor isoforms display differential

binding affinities for agonists, depending on whether the

ligands prefer to bind to either the coupled or uncoupled

form of the receptor; whereas antagonists appear un-

affected (Niswender et al., 1999). Tissue (choroid plexus

versus other brain regions)- and species-specific differ-

ences in 5-HT2C mRNA editing have been documented,

and it is conceivable that this process represents a novel

mechanism for achieving phenotypic specificity of signal-

ling for 5-HT2C receptor-mediated events. It has been

proposed that editing alterations of the 5-HT2C receptor

may play a role in the incidence of suicide (Niswender

et al., 2001).

9.2. Modulation of receptors by endogenous lipids: oleamide

Oleamide, an unsaturated fatty acid amide that accumu-

lates in the CSF of animals during sleep deprivation,

induces EEG measured sleep; however, the mechanism of

this hypnotic action is unclear. Such activity may derive

from enhancements of GABA or 5-HT receptor function, or

alternatively from changes in the catabolism or uptake of

related fatty acid amides (see Boger et al., 2000; Nicholson

et al., 2001). Opposing effects of oleamide on 5-HT2A/2C

and 5-HT7 receptor function have been reported (see

Thomas et al., 1997; Hedlund et al., 1999). The compound

acts as an endogenous allosteric modulator, which promotes

IP3 production, via 5-HT2 receptors, whereas cAMP pro-

duction, via 5-HT7 receptors, is negatively modulated

(Thomas et al., 1998b). Moreover, it has been shown that

oleamide can elicit dramatic increases in c-fos mRNA and

Fos protein in distinct brain regions. Thomas et al. (1999)

demonstrated that in the thalamus and hypothalamus, the

majority of neurones induced for c-fos expression also

expressed the 5-HT7 receptor, suggesting that alterations

in transcription may account for its physiological effects.

Furthermore, additional endogenous candidates of lipidic

nature have been found, which may affect the 5-HT re-

ceptor function.

9.3. Effects of 5-HT moduline on 5-HT1B and

5-HT1D receptors

5-HT moduline is an endogenous tetrapeptide (LSAL)

that may be produced from a chromogranin, which selec-

tively and allosterically interacts to reduce both 5-HT1B and

5-HT1D receptor activity (Massot et al., 1996). 5-HT-modu-

line binds at a site distinct from that bound by 5-HT.

Moreover, since 5-HT1B receptors are important in medi-

ating presynaptic autoinhibition of 5-HT, the role of 5-HT

moduline was anticipated to be augmentation of 5-HT

release, which has recently been demonstrated in the rat

prefrontal cortex (Ohashi et al., 2001). Similar effects are

seen on immunocompetent cells in which the proliferative

effects of 5-HT1B receptor activation are inhibited, suggest-

ing an immunomodulatory role for 5-HT moduline (Sibella-

Arguelles, 2001). Moreover, 5-HT moduline release is

increased following acute restraint stress in rats, whilst

deactivation of 5-HT moduline, by specific antibodies in

mice, significantly modified their behaviour in both the

D. Hoyer et al. / Pharmacology, Biochemistry and Behavior 71 (2002) 533–554546



open field and elevated plus maze, consistent with an

anxiolytic effect of the antibody and suggesting a potential

physiological role in the control of anxiety (Bonnin et al.,

1999; Grimaldi et al., 1999).

Thus, the fact that 5-HT-moduline increases 5-HT

release suggests that synthetic agents capable of recognis-

ing the 5-HT-moduline binding site and mimicking the

effect of the peptide may represent novel antidepressant

or anxiolytic agents (Fillion, 2000; Bourin and Hascoet,

2001). Furthermore, it is interesting that the peptide inter-

acts with two of the few 5-HT receptors, which, so far, have

been shown to be subjected to homo- and heterodimerisa-

tion (see also Fillion et al., 1996; Massot et al., 1996;

Cloez-Tayarani et al., 1997, 1998; Grimaldi et al., 1997;

Bentue-Ferrer et al., 1998).

9.4. Receptor dimerisation: 5-HT1B and 5-HT1D receptors

That an endogenous modulator is produced, which neg-

atively regulates a heptahelical receptor, may be surprising;

however, the recent discovery that both 5-HT1B and 5-HT1D

receptors are capable of forming homodimers when

expressed alone, and heterodimers when expressed together,

like an increasing number of other GPCRs, intuitively seems

to make sense (Xie et al., 1999). These findings are interest-

ing, since it has proven difficult to identify a 5-HT1D

receptor-mediated effect, whereas most effects have been

attributed to 5-HT1B receptors. This is more apparent in

rodents where the two receptors show differences in phar-

macological profile, in contrast to what is seen in higher

species, i.e. an almost indistinguishable pharmacology, using

the majority of commercially available ligands, with the

exception of very recent new additions, which have obvi-

ously not yet been utilised extensively. If one considers that

5-HT1D receptors do, in most cases, cosegregate with 5-HT1B

receptors, does heterodimerisation result in 5-HT1B phar-

macology? Such a scenario has been reported for GABAB1

and GABAB2 receptors; whereby when these two GPCRs

heterodimerise, they express exquisite GABAB1 pharmaco-

logy, otherwise, they are not functional. Moreover, similar

data have been reported for opiate receptors (see George

et al., 2000). Therefore, one may not expect to find many

functional responses that have 5-HT1D receptor pharmaco-

logy, since there are only very few tissues where this receptor

may be expressed in the absence of the 5-HT1B receptor. Still

more surprising may be the finding that 5-HT and dopamine

receptors may heterodimerise (Lee et al., 2000).

10. Conclusion

The challenge for the next decade of 5-HT research is

to define to what extent the almost incredible diversity in

receptors and transporters fulfils specific physiological

and/or pathophysiological roles. Since the molecular tools

are now in place, it may soon be possible to determine

which form of a given receptor is expressed in a given

tissue of interest, leading to a better understanding of its

effects in situ, rather than relying on measurements made

with recombinant receptors. This may therefore assist in

designing drugs with an adequate profile at the target

organ, assuming that this is known, and could conse-

quently be confirmed in human tissues. However, the

diversity in receptors described herein suggests that under

both physiological and, presumably even more so, under

pathological conditions, the status of the receptors may

vary dramatically from one subject to another. This may

even be the basis for differences in responder rates to a

given treatment. Obviously, such a phenomenon may not

be restricted to 5-HT receptors. It is clear that receptor

crosstalk, which is rather common amongst 5-HT and

other receptors, will considerably affect the responsiveness

of one patient versus another. For example, vascular

reactivity towards triptans may vary significantly between

patients, depending on the manner by which 5-HT1B

receptors may have been ‘primed’ by other receptors.

Similarly, depending on the nature of the receptor iso-

forms (5-HT4, 5-HT7 or 5-HT2C) expressed in the GI

tract/vessel/brain, it could be anticipated that certain

patients may demonstrate enhanced responsivity to par-

ticular treatments, i.e. titration may represent a rule rather

than an exception. Finally, since the human genome has

been cloned, one may anticipate knowing whether there

are more receptors for the 5-HT receptor family, assuming

that we know how to deal with orphan receptors. How-

ever, given the interactions with accessory proteins, in

addition to homo- and heterodimerisation, one can easily

envisage that the situation will not prove any simpler

10 years from now.

Chemical names

5-CT: 5-carboxamidotryptamine

8-OH-DPAT: 8-hydroxy-2-(di-n-propylamino)tetralin

BIMU 8: (endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-

2,3-dihydro-3-isopropyl-2-oxo-1H-benzimidazol-1-car-

boxamide hydrochloride

BRL 15572: 3-[4-(3-chlorophenyl) piperazin-1-yl]-1,1,-di-

phenyl-2-propanol

BRL 54443: 3-(1-methylpiperidin-4-yl)1H-indol-5-ol

BW 311C90: (S)-4-[[3-[2-(Dimethylamino)ethyl]-1H-indol-

5-yl]methyl]-2-oxazolidinone

BW 723C86: 1-[5(2-thienylmethoxy)-1H-3-indolyl]propan-

2-amine hydrochloride

CP 93129: 5H-Pyrrolo[3,2-b]pyridin-5-one, 1,4-dihydro-

3-(1,2,3,6-tetrahydro-4-pyridinyl)

DOB: 2,5-dimethoxy-4-bromoamphetamine

DOI: 2,5-dimethoxy-4-iodoamphetamine

EMDT: 2-ethyl-5-methoxy-N,N-dimethyltryptamine

GR 113808: [1-2[(methylsuphonyl)amino]ethyl]-4-piperidi-

nyl]methyl-1-methyl-1H-indole-3-carboxylate
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GR 125743: n-[4-methoxy-3-(4-methyl-1-piperizinyl)phen-

yl]-3-methyl-4-(4-pyrindinyl)benzamide

GR 46611: 2-Propenamide, 3-[3-[2-(dimethylamino)ethyl]-

1H-indol-5-yl]-N-[(4-methoxyphenyl)methyl]

GR 55562: 3-[3-(dimethylamino)propyl]-4-hydroxy-N-

[4-(4-pyridinyl)phenyl]benzamide

GR 65630: 3-(5-methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-

indol-3-yl)-1-propanone

GTI: 5-hydroxytryptamine-5-O-carboxymethylglycyltyrosi-

namide

HTF 919: Hydrazinecarboximidamide, 2-[(5-methoxy-1H-

indol-3-yl)methylene]-N-pentyl-, (Z)-2-butenedioate

L 694247: 2-[5-[3-(4-methylsulphonylamino)benzyl-

1,2,4-oxadiazol-5-yl]-1H-indol-3yl] ethanamine

LY 278584: 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-

3-yl)-1H-indazole-3-carboxamide

LY 334370: 5-(4-flurobenzoyl)amino-3-(1-methylpiperidin-

4-yl)-1H-indole fumarate

LY 344864: N-[(3R)-3-(dimethylamino)-2,3,4,9-tetrahydro-

1H-carbazol-6-yl]-4-fluoro-benzamide

LY 53857: Ergoline-8-carboxylic acid, 6-methyl-1-(1-meth-

ylethyl)-, 2-hydroxy-1-methylpropyl ester, (8b)-, (2Z)-

2-butenedioate

mCPP: 2-(2-methyl-4-chlorophenoxy)propanoic acid

MDL 100907: ( ± )2,3-dimethoxyphenyl-1-[2-(4-piperi-

dine)-methanol]

MDL 72832: 8-[4-[[(2,3-dihydro-1,4-benzodioxin-2-yl)me-

thyl]amino]butyl]

MK 212: 4-(6-chloro-2-pyrazinyl)piperazine

MK 462: 1H-Indole-3-ethanamine, N,N-dimethyl-5-(1H-

1,2,4-triazol-1-ylmethyl)

ML 10302: 2-(1-piperidinyl)ethyl-4-amino-5-chloro-2-me-

thoxybenzoate

NAD 299: 2H-1-benzopyran-5-carboxamide

PNU 109291: (S)-3,4-dihydro-1-[2-[4-(4-methoxyphenyl)-

1-piperazinyl]ethyl]-N-methyl-1H-2-benzopyran-6-car-

boximide

Ro 04-6790: 4-amino-N-[2,6-bis(methylamino)-4-pyrimi-

dinyl]-benzenesulfonamide

Ro 600175: (S)-2-(6-chloro-5-fluroindol-1-yl)-1-methye-

thylamine

Ro 630563: 4-amino-N-[2,6-bis(methylamino)pyridin-4-yl]-

benzenesulphonamide

RS 100235: 1-(8-amino-7-chloro-1,4-benzodioxan-5-yl)-

5-((3-(3,4-dimethoxyphenyl)prop-1-yl)piperidin-4-yl)-

propan-1-one

RS 102221: 8-[5-(5-amino 2,4-dimethoxyphenyl) 5-oxo-

pentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione

RS 127445: 2-Amino-4-(4-fluoronaphth-1-yl)-6-isopropyl-

pyrimidine

RS 23597-190: Benzoic acid, 4-amino-5-chloro-2-methoxy-,

3-(1-piperidinyl)propyl ester, monohydrochloride

RS 39604: Methanesulfonamide, N-[2-[4-[3-[4-amino-

5-chloro-2-[(3,5-dimethoxyphenyl)methoxy]phenyl]-

3-oxopropyl]-1-piperidinyl]ethyl]-, monohydrochloride

RS 57639: 4-amino-5-chloro-2-methoxy benzoic acid 1-(3-

[2,3-dihydrobenzo[1,4]dioxin-6yl)-propyl]-piperidin-4yl

methyl ester

RS 67506: 1-(4-amino-5-chloro-2-methoxyphenyl)-3-(1-n-

butyl-4-piperidinyl)-1-propanone

RU 24969: 1H-Indole, 5-methoxy-3-(1,2,3,6-tetrahydro-

4-pyridinyl)-butanedioate

SB 200646: N-(1-methyl-5-indonyl)-N 0-(3-pyridyl) urea

hydrochloride

SB 203186: 1H-Indole-3-carboxylic acid, 2-(1-piperidiny-

l)ethyl ester

SB 204070: 1-butyl-4-piperidinylmethyl-8-amino-7-chloro-

1-4-benzoioxan-5-carboxylate

SB 204741: N-(1-methyl-5-indoylyl)-N 0-(3-methyl-5-iso-

thiazolyl)urea

SB 206553: (5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tet-

rahydropyrrolo[2,3-f]indole)

SB 207710: 1-butyl-4-piperidinylmethyl-8-amino-7-iodo-

1,4-benzodioxan-5-carboxylate

SB 216641: [1,10-Biphenyl]-4-carboxamide, N-[3-[2-(dime-

thylamino)ethoxy]-4-methoxyphenyl]-20-methyl-40-(5-

methyl-1,2,4-oxadiazol-3-yl)

SB 224289: 10-methyl-5[[20-methyl-40-)5-methyl-1,2,4-oxa-

diazol-3-yl)biphenyl-4-yl]carbonyl-2,3,6,7-tetrahydro-

spiro[furo[2,3-f]indole-3,40-piperidine]oxalate

SB 236057: 10-ethyl-5-(20-methyl-40-(5-methyl-1,3,4-oxa-

diazol-2-yl)biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospir-

o[furo[2,3-f]indol3-3,40-piperidine

SB 242084: 6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-

oxy)-pyrid-5-yl carbamoyl] indoline

SB 258585: 4-iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-

yl)-phenyl]-benzenesulphonamide

SB 258719: (R)-3,N-dimethyl-N-[1-methyl-3-(4-methylpi-

peridin-1-yl)propyl]benzene sulphonamide

SB 269970: (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyr-

rolidine-1-sulphonyl)phenol

SB 271046: 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phe-

nyl)-3-methyl-2-benzothiophenesulphonamide

SB 272183: 1H-Indole-1-carboxamide, 5-chloro-2,3-dihy-

dro-6-(4-methyl-1-piperazinyl)-N-[4-(4-pyridinyl)-1-

naphthalenyl]

SB 357134: N-(2,5-dibromo-3-flurophenyl)-4-methoxy-

3-piperazin-1-ylbenzenesulphonamide

SDZ 21009: 1H-Indole-2-carboxylic acid, 4-[3-[(1,1-dime-

thylethyl)amino]-2-hydroxypropoxy]-, 1-methylethyl

ester

SKF 99101H: 1H-Indole-3-ethanamine, 4-chloro-N,N-di-

methyl-5-propoxy-, (E)-2-butenedioate

SR 57227: 4-amino-(6-chloro-2-pyridyl)-1-piperidine hy-

drochloride

U 92016A: 3H-benz[e]indole-2-carbonitrile, 8-(dipropyla-

mino)-6,7,8,9-tetrahydro-, monohydrochloride

UH 301: 1-naphthalenol, 7-(dipropylamino)-4-fluoro-

5,6,7,8-tetrahydro-, hydrobromide

WAY 100635: N-(2-(4-(2-methoxyphenyl)-1-pipera-

zinyl)ethyl)-N-(2-pyridyl)-cyclohexanecarboxamide tri-

chloride
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ZM 170809: 2-Propanamine, N,N,2-trimethyl-1-[(3-phenyl-

2-quinolinyl)thio]-monohydrochloride
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